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Abstract
The electronic structure and the single-particle spectral density of a stripe
array formed by ladder-like domain walls (DWs) and by antiferromagnetic
(AF) domains of width two lattice spacings are computed and compared with
angle-resolved photoemission spectroscopy (ARPES) spectra from some doped
cuprates belonging to the 214 family of compounds. We assume that bond order
is formed on legs in DWs and that the phase of the sublattice magnetization
changes by π across each DW. The intensity map plotted in the frame of
reference momentum–energy reproduces quite well the ARPES spectra of Nd-
doped La2−xSrx CuO4 (LSCO) systems obtained at the doping level of 15%.
We consider this agreement as an argument for a scenario of coexisting bond-
ordered regions and AF regions in the stripe phase of moderately doped
cuprates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A tendency towards spin and charge ordering in cuprates has been seen in the results of several
neutron scattering experiments [1]. Low-frequency spin fluctuations observed by many groups
at incommensurate wavevectors as relatively sharp peeks in the magnetic structure factor [2–4]
have been interpreted as being due to stripe fluctuations [5]. The anisotropy of resistivity [6]
also points at stripe formation. Stripes appear to influence phonon-mediated heat transport [7].
Furthermore, measurements performed by means of NMR and NQR techniques demonstrate
the emergence of slow spin fluctuations whose appearance is correlated with pinning of charge
modulations [8]. The distribution of nearest-neighbour bond lengths deduced from neutron
powder diffraction data [9, 10] and measured by means of extended x-ray-absorption fine
structure spectroscopy [11] also seems to basically agree with expectations based on a scenario
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9750 P Wróbel et al

of lattice response to local charge-stripe order. Moreover, an indication of stripe order may by
found by analysing the shape of ARPES spectra and their evolution with doping. For example,
it is natural to expect the Fermi surface to be flat in the stripe phase in the antinodal region,
near the vectors (±π, 0) and (0,±π) [5]. In addition, quasi-one-dimensionality of the system
should bring about the depletion of spectral weight in the nodal regions, near the Brillouin
zone diagonals. Much research has been done to check if these hypotheses are true [5, 12–16].
It seems that some general structure of spectra may be definitely attributed to an underlying
quasi-one-dimensional electronic structure [17–27].

In this paper we will concentrate on doped LSCO compounds, slightly above the doping
level 1/8 at which, it is believed, a tendency towards nanoscale phase separation seems to
be evident in the ARPES results [13, 16, 28]. Patches with high intensity may be seen in
antinodal regions in ARPES intensity maps obtained by integrating the spectra from 15%
doped La2−x−y NdySrx CuO4 (Nd-LSCO) [14]. The integration is performed in the 30 meV
window at the Fermi energy. Contrary to some predictions, appreciable spectral weight is
detected at the Fermi energy in nodal regions. A similar pattern of the spectral density at the
Fermi energy was predicted by a phenomenological theory of disordered charge stripes and
antiphase spin domains [29]. Unfortunately, this ingenious theory does not discuss the origin
of renormalized hopping terms in the effective one-body Hamiltonian and does not explain
the relation of the parameter renormalization with the underlying magnetic structure. The
evolution of the spectral weight as a function of doping has been analysed for the stripe phase by
means of the cluster perturbation technique (CPT) in the framework of the microscopic t–J and
Hubbard models [26]. This theory captures quite well the general trend of this development.
Nevertheless, it seems that the spectral weight maps derived within this approach for the doping
level at and above 12.5% do not show continuous well developed high-intensity straight patches
bridging antinodal regions. As we have already mentioned, such structures are experimentally
seen in nodal regions [14]. The remarks made above seem to suggest that some understanding
of the relation between the single particle spectral weight of Nd-LSCO at the filling level about
1/8 and the formation of the stripe phase is missing. A phase which we may expect to emerge in
a natural way in weakly doped antiferromagnets is a bond-ordered state [30]. Recently, an exact
diagonalization of the t–J model (t JM) at a finite cluster has been performed to study stripe
formation. It has been shown that the cluster-geometry change, from the standard tilted square
form of the 20-site cluster to the rectangular form of the 5 × 4 cluster, induces the formation
of a ground state with pronounced stripe-like charge inhomogeneities [31]. The distribution
of peaks in the single-particle spectral weight, which has been calculated by means of the
same method [32], resembles experimental ARPES spectra from La1.28Nd0.6Sr0.12CuO4 [13].
In particular, the theory captures quite well the strong dispersion along the (0, 0)–(π, 0) line.
The distribution of quasiparticle peaks in the single-particle spectrum obtained by means of
the exact diagonalization is in good agreement with the results of an additional calculation
performed by means of a different method, the bond operator theory. Unfortunately, neither
the numerical approach nor the analytical method reproduce the flattening of the experimental
band near the point (π, 0) and both of them fail to explain the emergence of the spectral weight
at the nodal region, in the form of a straight patch which is observed at the Fermi energy in
the experiments. Another analysis of the spectral weight in doped antiferromagnets, based
on the exact diagonalization of a small cluster, concerns the t JM with inhomogeneous terms
locally breaking the translational invariance and the spin-rotational SU(2) symmetry [23].
The pattern of the integrated spectral weight at the Fermi energy obtained by means of this
method resembles, to certain extent, ARPES spectra from Nd-LSCO at the doping level 12%.
Nevertheless, that pattern does not show enhanced intensity at nodal regions either. The
enhancement observed in experiments is the manifestation of remnant two-dimensionality in
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the stripe system. Thus, the analysis based on adding terms breaking the SU(2) symmetry
seems do not account for the shape of ARPES spectra from Nd-LSCO or LSCO at a doping
level slightly higher than 1/8 either.

The results of inelastic neutron scattering (INS) experiments indicate that pronounced AF
correlations exist in the stripe phase [3]. On the other hand, the relevance of bond order has been
recently demonstrated by means of the same experimental method [33]. In a recent work [34]
we have suggested that the coexistence of bond order with long-range AF order may take place
in the stripe phase. The scenario of nanoscale phase separation is realized by means of this
coexistence. In the framework of this concept we have shown that above the doping level
1/8, when the distance between stripe axes is four lattice spacings, a bond-centred stripe with
bond order inside stripes is more stable than a site-centred stripe. It is also known about the
site-centred stripe that it is more stable than a homogeneous system of holes created in the
homogeneous antiferromagnet [20, 35]. The latter piece of information gives rise to the final
conclusion that bond order may exist with AF order in the stripe phase of cuprates at doping
levels above 1/8. The mechanism of that coexistence is based on lowering the kinetic energy of
holes moving freely in hole-rich stripes which are formed as two-leg ladder-like DWs between
AF hole-poor domains in which the exchange energy decreases [34].

In the next section, in the framework of a scenario for nanoscale phase separation and
coexistence of AF long-range order with bond order, we will derive an effective tight-binding
Hamiltonian describing a quasiparticle propagating in such a spin background. Next, we will
calculate the part of the spectral function which is accessible to measurements in photoemission
experiments. Finally we will discuss the calculation results. They seem to show characteristic
features which may be seen in ARPES spectra of Nd-LSCO slightly above the doping
level 1/8.

2. Band structure of a stripe system with coexisting bond and AF orders

The t JM in the framework of which we perform the calculation is

H = −
∑

i, j

ti j c
†
i,σ c j,σ + J

∑

〈i, j〉

(
Si S j − ni n j

4

)
. (1)

The states in which any site is doubly occupied have been excluded by definition from the
Hilbert space in which that model acts. 〈i, j〉 represents a pair of nearest-neighbour (NN)
sites. �Si and ni denote the operators of electron spin and density at site i respectively. The
hopping matrix element between NN sites in the square lattice on which the t JM is defined
is t . t ′ is the hopping matrix element between second-NN sites, and t ′′ is the hopping matrix
element between third-NN sites. The rest of the hopping integrals ti, j vanish. We concentrate
on the doping level about 1/8, at which the distance between axes of nearest stripes is four
lattice spacings and AF correlations seem to be of long range [3]. Our previous analysis has
provided convincing arguments that in such a case the stripe takes the form of a two-leg ladder-
like DW which separates hole-poor AF domains [34]. The phase of sublattice magnetization
in domains changes by π across a DW. Each DW is bond ordered. Singlets are formed on
legs of the ladder-like DW. The underlying spin structure of the stripe system at the doping
level about 1/8 has been presented in figure 1. A natural question arises: what is mechanism
which gives rise to long-range AF correlations, if AF domains are separated by DWs which
consist of singlets [36]? The structure depicted in figure 1 emerges in the presence of doped
holes only. The creation of a hole gives rise to the appearance of an uncompensated spin in the
DW. This spin may be parallel or antiparallel to a nearest spin in the neighbour domain. The
weight of states in which these spins are antiparallel, figures 2(a), (b), is higher, because such
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Figure 1. Elementary cell of the underlying
spin structure assumed in the calculation
(inside the dashed rectangle). Ovals represent
singlets.
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Figure 2. The mechanism which gives rise to
FM coupling between nearest spins that belong
to different domains. These spins would belong
to the same AF sublattice if the system were
homogeneously ordered.

a configuration is preferred by AF coupling between NN sites. States depicted by figures 2(a)
and (b) are coupled by the hopping term in the Hamiltonian. Since their weight is higher than
the weight of states in which an uncompensated spin in the DW and the nearest spin in the
domain are parallel, the hopping term which transforms the state depicted by figure 2(a) into
the state depicted by figure 2(b) mediates effective ferromagnetic (FM) coupling between sites
i and j . Some quantum fluctuations will be present in the underlying spin background of the
stripe system. They may take the form of triplet excitations on bonds in DWs and multimagnon
excitations in domains. Figure 4 in the previous work [34] contains some examples of quantum
fluctuations in the spin background. They contribute a lot to the energy of the system. On the
other hand, it seems that quantum fluctuations merely renormalize the shape of quasiparticle
dispersion for a given spin background and do not give rise to qualitative changes. This has
been demonstrated in the case of a hole propagating in the AF spin background [37], as well
as in the case of bond-ordered two-leg ladders [38, 39] and bond-ordered two-dimensional
(2D) systems [32]. When it is necessary we will take into account the influence of quantum
fluctuations on the distribution of spectral weight. A scenario which underlies the calculation
which we are going to outline next is based on the assumption that hole motion inside ladder-
like DWs is governed by the exchange of positions between a hole–fermion pair on a bond
and a singlet on a nearby bond [38]. This exchange is mediated by the hopping terms in the
initial Hamiltonian (1). We also assume that a hole propagates in the AF spin background
as a spin polaron [40]. In the calculation we take into account a simplest form of coupling
which moves a hole between a bond-ordered DW and an AF domain. This form of coupling
originates in the hopping term of the initial Hamiltonian. During the construction of an effective
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Figure 3. Graphical representation of some states involved in the process of hole propagation inside
an AF domain. Zig-zag lines represent ‘broken-bonds’. Contributions from them to Ising energy
are higher by J/2 than the contributions from bonds occupied by two antiparallel spins.

Hamiltonian which describes the motion of a quasiparticle in the underlying spin background,
some formulae will be useful. They are presented in the appendix.

We begin the derivation of the effective Hamiltonian describing hole propagation in the
spin background depicted by figure 1 by outlining the mechanism of hole propagation inside an
AF domain. A hole created and moving in the Néel background shifts spins between different
sublattices and creates defects in the AF structure; see figures 3(a)–(c). Such a process gives rise
to an increase of the Ising energy. This rise is roughly speaking proportional to the length of a
path along which the hole has travelled, which means that a tendency towards hole confinement
appears [41]. In order to take into account such a tendency we will analyse the hole motion
in the framework of a basis which consists of states representing holes confined in the AF
background by linear defects (strings) left behind by moving holes on their way. We call these
states spin polarons. A wavefunction representing a confined spin polaron at a site i in an
AF domain is a combination of states which are created from the state ci,↑(↓)|N〉 by the NN
hopping term when a hole created at the site i starts to move inside the domain,

|�i〉 =
∑

Pi

αl(Pi )|Pi 〉; (2)

|N〉 is the Néel state in the domain, and |Pi 〉 denotes a state obtained by hopping along a path
Pi of a hole created at the site i . αl(Pi ) is the amplitude of this state. We have assumed for
simplicity that αl(Pi ) depends solely on the length l(Pi ) of the path Pi . The length of a path
or of a string state is defined as the number of hops needed to form a given string state from a
state representing a hole created in the AF spin medium. At the first stage of the analysis we
take into account only the hopping between NN sites because t � J, t ′, t ′′. Processes related to
hopping between further neighbours and processes related to swapping antiparallel spins by the
transversal term in the exchange interaction will be considered later as a perturbation. A hole
moving inside a domain may make its first step in (z − 1) directions. z = 4 is the coordination
number of the square lattice. There are in principle (z − 2) direction choices of each next hop,
if the hole moves without retracing inside the domain. On the full square lattice there are z
choices for the direction of the first step and (z − 1) for the direction of further hops during
the non-retractable motion. These number gets reduced by one for the domain formed by two
chains of sites. Thus if we neglect some details, as for example path crossing, we may write

〈�i |�i〉 = α2
0 + (z − 1)

∑

μ=1

(z − 2)μ−1α2
μ. (3)



9754 P Wróbel et al

Each prefactor in (3) at the square α2
μ represents the number of different paths with the lengthμ.

We calculate the energy of the spin polaron state |�i〉, ε1 which is given by the expectation value
of a trial Hamiltonian H0, 〈�i |H0|�i〉 with the assumption that the motion of a hole which has
started from the site i is restricted to the interior of the domain and that the contribution from
the interaction term is restricted to the Ising part

∑
〈i, j〉(S

z
i Sz

j − ni n j

4 ),

〈�i |H0|�i〉 =
[

3α2
0 + (z − 1)

∑

μ=1

(z − μ)μ−1(4 + μ)α2
μ

]
J

2

+ 2(z − 1)
∑

μ=0

(z − 2)μαμαμ+1t . (4)

The first term in (4) basically counts the number of ‘broken bonds’, that are not occupied by
a pair of antiparallel spins, in which case the Ising contribution to the energy of that bond is
higher by J/2 than in the case if it were occupied by a pair of antiparallel spins. The second
term in (4) is the contribution from the hopping operator to the spin polaron energy. The
prefactors appearing in this term represent the number of paths with a given length multiplied
by the number of directions in which these paths may be extended. The appearance of the
factor 2 is related to the fact that the hopping which couples paths of length μ and μ+ 1 may
take place forth and back. The values of parameters αμ can be found by minimizing 〈�i |H |�i〉
under the constraint 〈�i |�i〉 = 1. After we have constructed spin polarons which are formed
in AF domains we are able to present the full basis of single-particle states. The underlying
spin background which has been presented in figure 1 plays the role of the vacuum |�〉 for
hole-like quasiparticles which propagate in this background. |�〉 has been obtained by acting
on the absolute vacuum |0〉, in which no particles are present, with a product of operators like
s†

LU creating singlets on bonds connecting sites L and U and operators c†
iσ creating spins in

domains according to the pattern shown in figure 1. New fermionic operators h†
iσ create single-

particle positively charged hole-like states from the vacuum for holes |�〉. The action of the
operator h†

Lσ (h
†
Uσ ) on |�〉, where the site L(U) belongs to a ladder-like DW, exchanges the

operator s†
LU in the product defining |�〉 by the operator c†

Uσ (c
†
Lσ ), which means that instead

of a singlet on the bond connecting sites L and U there is a hole on the site L(U) and spin σ
on the site U(L). The action of the operator h†

iσ on a site i which belongs to an AF domain
creates a spin polaron |�i〉 in that domain. The spin polaron is a combination of some states,
the amplitudes of which are given by prefactors αμ. These states include ci σ̄ |�〉 and states
obtained by applying consecutively the NN inside-domain hopping term to the state ci σ̄ |�〉.
A label which we will use to mark the fermionic operator creating either a bond hole or a
hole-like spin polaron at a given site is

(m,n
i, j

)
. m refers to the column number labelling the

position of the unitary cell to which belongs the site where the hole-like particle has been
created, n refers to the row number labelling the position of the unitary cell, and i (column),
j (row) are indices representing the position of that site inside that unitary cell. i and j run
from 0 to 7 and from 0 to 1, respectively. Now we start to explain with some details the
origin of contributions to the effective Hamiltonian for a single quasiparticle propagating in
the spin background depicted by figure 1 which is an exemplification of coexistence between
AF and bond orders. We concentrate on the case of a spin-up quasiparticle. Within the
approximation which we use, we may assume that operators h†

i↑ create in the vacuum |�〉
eigenstates of the unperturbed Hamiltonian H0, which may be represented by the following
formula:

H0 =
∑

〈i, j〉
Si S j − t

∑

〈i ′, j ′〉
c†

i ′σ c j ′σ + J
∑

〈i ′, j ′〉

(
Sz

i ′ Sz
j ′ − ni ′ n j ′

4

)
(5)
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where 〈i, j〉 are pairs of sites on which singlets depicted in figure 1 have been formed and
〈i ′, j ′〉 are pairs of NN sites belonging to AF domains. The action of H0 is restricted to the space
containing states in which none of the sites is doubly occupied. This Hamiltonian contains the
Ising part of the exchange energy of links inside domains. It also drives hole hopping between
NN sites inside each domain. Since all matrix elements which may give rise to deconfinement
of a hole have been by definition removed from H0, polaron states |�i〉 are its eigenstates.
Processes which bring about deconfinement of holes will be treated at the latter stage of the
calculation as a perturbation. The matrix elements of the representation (5) for the unperturbed
Hamiltonian H0 and the matrix elements of the true trial Hamiltonian, eigenstates of which
are localized spin polaron states (2), are actually different in some cases for states representing
longer strings. Within our approximation in which details of longer strings are neglected those
differences are either irrelevant because they appear for longer paths or we systematically take
them into account. The exchange energy of sites forming bonds occupied by singlets in figure 1
are the only contribution to the Hamiltonian H0 from DWs. Terms in the Hamiltonian of the
t JM which couple a site belonging to a ladder-like DW with a site belonging to a domain do
not contribute to H0. Thus, it is clear that within our approximation the vacuum state |�〉 and
the single particle states h†

iσ |�〉 are eigenstates of H0 for i located both in domains and in DWs.
Within the lowest-order approximation the on-site energy of a quasiparticle with spin up created
at the site

(m,n
0,1

)
which belongs to a DW is 2J . From now on, the reference value of the energy

is the energy of the vacuum state |�〉. The contribution from a destroyed singlet to the on-site
energy of a hole-like quasiparticle created at the site

(m,n
0,1

)
is (3/4)J . A hole-like quasiparticle

occupying the site
(m,n

0,1

)
with spin up is by definition the same as a single fermion with spin up

which occupies the site
(m,n

0,0

)
belonging to the bond

(m,n
0,0

)
–
(m,n

0,1

)
. Since spins on the sites

(m,n
0,0

)

and
(m−1,n

7,0

)
are in this case parallel, the lowest-order contribution to the exchange energy of the

bond between these two sites additionally increases by J/4 compared to the contribution from
this bond in the vacuum state |�〉. In the presence of a hole, the contribution from the potential
term − ∑

〈i, j〉 ni n j/4 in the initial Hamiltonian of the t JM is higher by J . By adding all partial
contributions we get the value 2J of the total on-site energy of the spin-up quasiparticle at the
site

(m,n
0,1

)
. Spin-up quasiparticles created in DWs at all sites which are NNs of sites in domains

occupied by spins pointing down, have the same on-site energy.
Finally we deduce that in the effective single-particle Hamiltonian representing the

propagation of a quasiparticle there appears a term

δ1 Heff = 2J
∑

m,n

[
h†
(m,n

0,1)↑
h(m,n

0,1)↑ + h†
(m,n

1,1)↑
h(m,n

1,1)↑ + h†
(m,n

4,0)↑
h(m,n

4,0)↑ + h†
(m,n

5,0)↑
h(m,n

5,0)↑
]
. (6)

The fermionic operators h†
(m,n

i, j )
and h(m,n

i, j )
transform the underlying vacuum |�〉 into the single-

particle state representing a hole created in a DW and the single-particle state into |�〉,
respectively. The notation for indices which we use seems not to be very short, but such a form
of it is basically unavoidable because the elementary cell of the underlying spin background,
figure 1, is rather big. That notation also helps to trace easily at the map, which is figure 1,
the results of hopping events mediated by the Hamiltonian Heff. An analogous term will
appear in the Hamiltonian representing a propagating spin-down quasiparticle, but with a
different set of indices labelling sites in the elementary cell. The creation of the spin-down
quasiparticle at these sites, (0, 0), (1, 0), (4, 1), (5, 1), induces the formation at the ladder leg
of an uncompensated spin, the direction of which is parallel to the direction of the nearest spin
in the domain. For the sake of simplicity we will concentrate in this paper on the propagation
of the spin-up quasiparticle. Such a simplification is possible because despite the breakdown of
the time-reversal symmetry by the underlying spin structure, the energy of the spin-up and the
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spin-down quasiparticles is degenerate. Later we will use this observation in the calculation.
Now we find the second diagonal term in the Hamiltonian describing the propagation of the
spin-up polaron. The on-site energy of the spin-up hole-like quasiparticle is lower for some
sites by J/2 than for sites to which the contribution (6) refers because the spin of the bond-
fermion which is formed after a hole has been created at a bond initially occupied by a singlet
is in this case antiparallel to the nearest spin in one of domains,

δ2 Heff = 3
2 J

∑

m,n

[
h†
(m,n

0,0)↑
h(m,n

0,0)↑ + h†
(m,n

1,0)↑
h(m,n

1,0)↑ + h†
(m,n

4,1)↑
h(m,n

4,1)↑ + h†
(m,n

5,1)↑
h(m,n

5,1)↑
]
. (7)

Let us concentrate now on the on-site energy of quasiparticles created at sites belonging
to domains. By definition, a spin-up hole-like spin polaron can be created exclusively at sites
which have been initially occupied by a spin-down fermion. An obvious contribution to the
on-site energy of a hole-like quasiparticle energy in domains is ε1, the minimum value of the
matrix element (4) obtained under the constraint 〈�i |�i〉 = 1. During the construction of spin
polarons we have considered only hopping between NN sites, which is governed by the hopping
with the highest integral t . We have also neglected some ‘high-order’ processes related to path
crossing or to the action of the XY term in the Heisenberg model. In the analysis which we start
now, we will discuss in the framework of the lowest-order perturbation theory the contribution
of some neglected processes to the effective Hamiltonian Heff. States depicted by figures 4(b)
and (c) are string states of length 1 and are components of the spin polaron wavefunction |�i〉
at the site i . A single vertical or horizontal hop of the hole created in the AF background at the
site i gives rise to the states depicted by figures 4(b) and (c) respectively. The hopping term
to next-nearest neighbours (NNN) couples states represented by figures 4(b) and (c), which
brings about a contribution to the matrix element 〈�i |H1|�i〉, where H1 = H − H0. This
contribution is

γ1 = 4t ′α2
1 . (8)

We recognize in (8) a product of amplitudes with which string states of length 1 appear in
the definition (2) of the spin polaron state. The factor 4 which appears in (8) is related to
the fact that hopping which couples states (b) and (c) may occur in both directions and that
analogous coupling takes place between the state depicted by figure 4(c) and the state depicted
by figure 4(d). The state depicted by figure 4(d) has been obtained by a single downward hop
of a hole created in the AF domain at the site i . The contribution

γ2 = 2t ′′α2
1 (9)

to 〈�i |H1|�i〉 originates in a similar way with the coupling between states depicted in
figures 4(c) and (d). That coupling is mediated by the hopping term to third-nearest-neighbour
(TNN) sites. Matrix elements between longer string states which are components of the same
spin polaron wavefunction may also contribute to the renormalization of the spin polaron on-
site energy. To be more specific, the coupling between states as depicted by figures 4(e) and (f)
and between their reflections in the horizontal line running through the site i gives rise to the
correction

γ3 = 2t ′
[

2α2
2 + (z − 1)

∑

μ=3

(z − 2)μ−3α2
μ

]
(10)

to 〈�i |H1|�i〉, while the coupling between the state depicted by figure 4(g) and its reflection
in the horizontal line running through the site i together with some similar processes in which
longer strings are involved brings about the correction

γ4 = 2t ′′
[
α2

2 + (z − 1)
∑

μ=3

(z − 2)μ−3α2
μ

]
. (11)
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Figure 4. Illustration of processes
contributing to some terms in the effective
Hamiltonian. These terms define the on-
site energy and the quasiparticle hopping
between sites which belong to AF
domains.

The states represented by figures 4(e)–(g) have been obtained by means of three different
sequences of hole moves. The hole has been initially created at the site i . The sequences consist
of two hops which are hops upwards–upwards, upwards–left and left–upwards, respectively.
Longer strings pinned to the site i may be coupled in a very similar way, which also gives
rise to a change of the on-site energy. This change has actually already been incorporated
into parameters γ3 and γ4. Finally, by collecting all terms we may infer that in the effective
Hamiltonian Heff there appears the following term referring to the on-site energy of spin
polarons:

δ3 Heff = (ε1 + γ1 + γ2 + γ3 + γ4 + J/4)×
∑

m,n

[
h†
(m,n

2,1)↑
h(m,n

2,1)↑ + h†
(m,n

3,0)↑
h(m,n

3,0)↑

+ h†
(m,n

6,0)↑
h(m,n

6,0)↑ + h†
(m,n

7,1)↑
h(m,n

7,1)↑
]
. (12)

The additional term J/4 in the prefactor is related to the fact that the contribution from the
contact interaction −Jni n j/4 between a site i in a domain and a site j in a DW is higher by
J/4, when a hole is created in the domain at the site i . This interaction was neglected when
we were calculating the eigenenergy ε1 of the spin polaron and needs to be taken into account
now. (12) is the last on-site term in the effective Hamiltonian.
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The NN hopping integral for the quasiparticle, the propagation of which we describe in
this paper, is the same as the bare hopping integral provided that the sites between which the
quasiparticle moves belong to the same initially ordered bond inside a DW [34]. Thus, the
term which describes the quasiparticle hopping between NN sites, on which singlets have been
formed in the underlying spin background, takes the following form:

δ4 Heff = −t
∑

m,n

{[
h†
(m,n

0,1)↑
h(m,n

0,0)↑ + h†
(m,n

1,1)↑
h(m,n

1,0)↑

+ h†
(m,n

4,1)↑
h(m,n

4,0)↑ + h†
(m,n

5,1)↑
h(m,n

5,0)↑
] + H.c.

}
. (13)

The NN hopping integral for a pair of sites which belong to different singlets in the underlying
insulating state is t/2 instead of −t . The change of sign and the reduction of absolute value may
be deduced from the form of the first term on the right-hand side of equation (36). Therefore, we
may write the following expression for the contribution to the effective Hamiltonian describing
quasiparticle hopping between NN sites belonging to different bonds on which singlets has
been formed in the underlying spin background:

δ5 Heff = t

2

∑

m,n

{[
h†
(m,n

1,0)↑
h(m,n

0,0)↑ + h†

(m,n−1
0,1 )↑

h(m,n
0,0)↑ + h†

(m,n
1,1)↑

h(m,n
0,1)↑ + h†

(m,n−1
1,1 )↑

h(m,n
1,0)↑

+ h†
(m,n

5,0)↑
h(m,n

4,0)↑ + h†

(m,n−1
4,1 )↑

h(m,n
4,0)↑ + h†

(m,n
5,1)↑

h(m,n
4,1)↑ + h†

(m,n−1
5,1 )↑

h(m,n
5,0)↑

]

+ H.c.

}
. (14)

The value of the NN hopping integral, between a site which belongs to a domain and a site
which belongs a DW, can be inferred from the first part of the right-hand side in equation (38).
The prefactor in a term which represents that process contains the amplitude α0 of zero length
string states,

δ6 Heff = − t√
2
α0

∑

m,n

{[
h†

(m,n−1
7,1 )↑

h(m,n
0,1)↑ + h†

(m,n
2,1)↑

h(m,n
1,1)↑ + h†

(m,n
3,0)↑

h(m,n
4,0)↑

+ h†
(m,n

6,0)↑
h(m,n

5,0)↑
] + H.c.

}
. (15)

Since the time-reversal symmetry and the translational symmetry are broken inside AF
domains, the propagating quasiparticle cannot move between different sublattices and no
term related to NN hopping inside domains is generated in the effective Hamiltonian Heff.
NNN quasiparticle hopping inside DWs and hopping between sites which belong to a DW
and a domain is a first-order process that is mediated by the NNN hopping term in the
bare Hamiltonian. The explicit forms of related contributions to Heff may be deduced from
formulae (36)–(38),

δ7 Heff = t ′

2

∑

m,n

{[
h†
(m,n

1,1)↑
h(m,n

0,0)↑ + h†

(m,n−1
1,1 )↑

h(m,n
0,0)↑ + h†

(m,n
1,0)↑

h(m,n
0,1)↑ + h†

(m,n−1
0,1 )↑

h(m,n
1,0)↑

+ h†
(m,n

5,1)↑
h(m,n

4,0)↑ + h†

(m,n−1
5,1 )↑

h(m,n
4,0)↑ + h†

(m,n
5,0)↑

h(m,n
4,1)↑ + h†

(m,n−1
4,1 )↑

h(m,n
5,0)↑

]

+ H.c.

}
, (16)

δ8 Heff = − t ′
√

2
α0

∑

m,n

{[
h†

(m−1,n
7,1 )↑

h(m,n
0,0)↑ + h†

(m−1,n−1
7,1 )↑h(m,n

0,0)↑ + h†
(m,n

2,1)↑
h(m,n

0,0)↑
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+ h†

(m,n−1
2,1 )↑

h(m,n
0,0)↑ + h†

(m,n
3,0)↑

h(m,n
4,1)↑ + h†

(m,n+1
3,0 )↑

h(m,n
4,1)↑ + h†

(m,n
6,0)↑

h(m,n
5,1)↑

+ h†

(m,n+1
6,0 )↑

h(m,n
5,1)↑

] + H.c.

}
. (17)

The task of finding the formula for the term describing NNN hopping inside AF domains is
slightly more tedious. For example the coupling by the XY term in the Heisenberg model
between string states depicted by figures 4(f) and (h) gives rise to hopping terms in Heff which
shift a spin polaron from the site i to the site j and vice versa. We analyse now the XY
term, because it has been neglected during the first stage of the analysis, when quasi-confined
spin polaron states have been constructed. Since the string state depicted by figure 4(f) is a
component of the wavefunction |�i〉 for the spin polaron created at the site i and the string
state depicted by figure 4(h) is evidently a component of the wavefunction for the spin polaron
created at the site j , the coupling between these components gives rise to the coupling between
spin polaron states |�i〉 and |� j〉. This brings about a contribution to the matrix element
〈� j |H |�i〉 and to the hopping term in the effective Hamiltonian Heff. Also the coupling
between the states depicted by figures 4(g) and (h) contributes to the hopping term between
the sites i and j in Heff. This coupling is mediated by the XY term. We have just discussed
the action of the XY term which by removing two defects in the AF structure transforms string
states of length 2, tails of which are pinned to the site i , into the state representing a hole created
at the site j in the AF ordered domain. By a string tail we mean its end opposite the end at
which sits a hole. The XY term may transform in an analogous way a state representing a hole
created in the domain at the site i into a string state of length 2 pinned at the tail to the site
j . This additional coupling between components of the spin polaron states at the sites i and
j doubles the value of the hopping integral between these sites in the effective Hamiltonian.
Thus, after a little thought we may deduce that an appropriate contribution to the integral for
the NNN hopping of quasiparticles inside domains is

τ1 = 2J
∑

μ=2

(z − 2)μ−2αμαμ−2. (18)

The first term in the sum presented above refers to coupling between strings of length 0 and 2.
We have just outlined its origin in detail. Other terms appear in the sum (18) because longer
strings, which are created when a hole moves further from the site j in figures 4(f)–(h), are
also coupled by the XY term in the Heisenberg model. The hop left of the hole depicted by
figure 4(g) gives rise to the string state of length 3, figure 4(i), which is pinned to the site j .
Since we have neglected the possibility of path crossing when we were constructing the quasi-
confined spin polaron states, some corrections need to be made now. For example, we have not
considered before that by applying the NN hopping term to the state depicted by figure 4(i) we
may create the state depicted by figure 4(j). Since the latter state is a string-like component of
the spin polaron at the site j obtained by hopping downwards and left of a hole created at that
site, we deduce that the process described above generates a contribution to the prefactor of the
NNN hopping term in the effective Hamiltonian,

τ2 = 2tα3α2. (19)

The factor 2 originates from the fact that the motion of a hole around a plaquette in the
square lattice may take place clockwise and anticlockwise. We also recognize α3 and α2 as
amplitudes of strings, which have the length 3 and 2, respectively. Exactly such strings which
are components of the spin polaron states at the sites i and j in figures 4(i), (j) are coupled
by the NN hopping term in the initial Hamiltonian. The NNN term in the initial Hamiltonian
generates coupling between states representing ‘bare’ holes created in the AF background of
domains. Since these states are also string components with the length 0 of some spin polaron
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wavefunctions, coupling between the latter is also generated. Examples of such coupled string
states are figures 4(h) and (k). The contribution to the NNN hopping integral in Heff is

τ3 = t ′α2
0 . (20)

The NNN term in the bare Hamiltonian also couples states depicted by figures 4(f) and (l) which
are string-like components with length 2 of spin polaron states at the sites i and j , respectively.
The coupling amplitude is

τ4 = 2t ′α2
2 . (21)

The appearance of the factor 2 is related to the fact that states which are created when holes
move between the sites i and j in opposite directions around the plaquette, as in the case of the
states depicted by figures 4(f) and (l), are also coupled by the bare NNN hopping. The state in
figure 4(l) has been obtained by hopping left and downwards of a hole which has been initially
created at the site j . By collecting all contributions, which we have discussed above, we see
that the new term in Heff is

δ9 Heff = (τ1 + τ2 + τ3 + τ4)×
∑

m,n

{[
h†
(m,n

3,0)↑
h(m,n

2,1)↑ + h†

(m,n−1
2,1 )↑

h(m,n
3,0)↑ + h†

(m,n
7,1)↑

h(m,n
6,0)↑

+ h†

(m,n−1
7,1 )↑

h(m,n
6,0)↑

] + H.c.

}
. (22)

By means of a similar analysis as for the hopping between NNN sites we may find the TNN
hopping term in the effective Hamiltonian. For the operator representing the quasiparticle
hopping inside DWs we get

δ10 Heff = t ′′

2

∑

m,n

{[
h†

(m,n+1
0,0 )↑

h(m,n
0,0)↑ + h†

(m,n+1
0,1 )↑

h(m,n
0,1)↑ + h†

(m,n+1
1,0 )↑

h(m,n
1,0)↑

+ h†

(m,n+1
1,1 )↑

h(m,n
1,1)↑ + h†

(m,n+1
4,0 )↑

h(m,n
4,0)↑ + h†

(m,n+1
4,1 )↑

h(m,n
4,1)↑ + h†

(m,n+1
5,0 )↑

h(m,n
5,0)↑

+ h†

(m,n+1
5,1 )↑

h(m,n
5,1)↑

] + H.c.

}
. (23)

The TNN hopping of the quasiparticle between domains and DWs is governed by the following
term:

δ11 Heff = − t ′′
√

2
α0

∑

m,n

{[
h†

(m−1,n
0,0 )↑

h(m,n
0,0)↑ + h†

(m,n
2,1)↑

h(m,n
0,1)↑ + h†

(m,n
3,0)↑

h(m,n
1,0)↑

+ h†

(m−1,n
7,1 )↑

h(m,n
1,1)↑ + h†

(m,n
6,0)↑

h(m,n
4,0)↑ + h†

(m,n
2,1)↑

h(m,n
4,1)↑ + h†

(m,n
3,0)↑

h(m,n
5,0)↑

+ h†
(m,n

7,1)↑
h(m,n

5,1)↑
] + H.c.

}
. (24)

To the TNN hopping term between sites in domains contribute: (a) the mechanism which is
based on the shortening of strings by the action of the XY term, (b) the coupling of strings with
length 0 by the TNN hopping term in the initial Hamiltonian and (c) the exchange between the
head and the tail of a straight string with length 2. The last process is mediated by the TNN
hopping term in the initial Hamiltonian (1).

The contributions to the hopping integral in these three cases are

τ5 = 2J
∑

μ=2

(z − 2)μ−2αμαμ−2, (25)

τ6 = t ′′α2
0 , (26)

τ7 = t ′′α2
2 . (27)
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Since the origin of these couplings is the same as for the NNN hopping term in Heff we do not
discuss them in detail. Thus, the TNN hopping operator, which is the last contribution to Heff

discussed by us at the approximation level, that we have applied, takes the form

δ12 Heff = (τ5 + τ6 + τ7)
∑

m,n

{[
h†

(m,n+1
2,1 )↑

h(m,n
2,1)↑ + h†

(m,n+1
3,0 )↑

h(m,n
3,0)↑ + h†

(m,n+1
6,0 )↑

h(m,n
6,0)↑

+ h†

(m,n+1
7,1 )↑

h(m,n
7,1)↑

] + H.c.

}
. (28)

Figure 6 depicts the electronic structure which we have obtained by solving the Hamiltonian
Heff. It represents the energy dispersion E(p) of all bands along the line (0, 0)–(π, 0)–
(π, π)–(0, 0) and the line obtained by performing the rotation by π/2 around the point (0, 0).
Such a combination of dispersion curves is justified by conditions in which experiments are
performed, because it seems that stripes in some regions of the sample may run vertically,
while in other regions they may run horizontally. The reason for this mixing can be, for
example, sample twinning. Nondispersing parts of bands are related to some obstacles for
hole propagation in the directions perpendicular to stripes. That kind of motion seems to be at
least partially blocked, which is clear because Heff by definition cannot mediate quasiparticle
motion occurring exclusively in the direction perpendicular to stripes. It seems that the lack
of the energy dispersion in some directions accounts for straight patches of the spectral weight
which appear in the density maps obtained by means of ARPES measurements [42]. The
frame of reference applied to draw these maps is the same as we have used to obtain figure 6
(momentum–energy), while the second derivative of ARPES spectra plays the role of a density-
like parameter which marks regions with high spectral weight [28]. We shall make a more
detailed comparison with ARPES spectra after we calculate the spectral weight by means of
our approach, which is a combination of bond and string formalisms.

3. Single-particle spectral function in the stripe phase with coexisting bond and
AF orders

ARPES probes the one-particle spectral function A−(k, ω). In our analysis of ARPES spectra
in the stripe phase of cuprates we neglect the influence of temperature. We also assume that
the description of the photoelectric effect in terms of Fermi’s golden rule is sufficient and,
furthermore, we omit in the calculation electromagnetic dipole matrix elements between the
wavefunction of a photoelectron and the wavefunctions of electrons in initial states. We apply
the single-particle approximation in the calculation of the spectral function A−(k, ω), which
is natural, because the Hamiltonian Heff by definition does not contain the interaction terms.
Since electrons are emitted during the photoelectric process, information is gathered at T = 0
only about the one-electron removal part of the spectral function, which can be written as

A−(k, ω) =
∑

m

|〈�N−1
m |ck↓|�N

0 〉|2δ(ω + E N−1
m − E N

0 ). (29)

|�N
0 〉 and |�N

m 〉 denote the ground state and exited states of a system with N electrons,
respectively. Due to the formation of the stripe structure, the shape of which is determined
by the underlying spin background depicted by figure 1, the first Brillouin zone (1BZ) gets
reduced by a factor of 8 in the horizontal direction and by a factor of 2 in the vertical direction.
The Hamiltonian Heff may be written in diagonal form in terms of operators h†

k,↑,α , and their
Hermitian conjugates, which are determined by the form of Hamiltonian eigenstates,

h†
kR,↑,α = 1√

DW

∑

n,l

eikR (nd,lw)
∑

i, j

FkR ,(i, j),↑,αh†

(n,l
i, j)↑

(30)
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Figure 5. Graphical representation of states involved in the
generation of quantum fluctuations in |�〉. Contributions from
these fluctuations determine to a large extent the shape of the
spectral function.

where kR belongs to the reduced 1BZ, α labels the band number, d = 8 is the length of the
elementary supercell, w = 2 is the width of the elementary supercell and Dd × Ww is the
system size. Thus, within the single-particle approach, the one-electron removal part of the
spectral function is

A−(k, ω) =
∑

α

δ(ω + εk,α)|
∑

n,l

∑

i, j

∑

i ′, j ′
F∗

k,modKR ,(i, j);↑,αeik(nd,lw)e−ik(i ′, j ′)

× 〈�|h(n,l
i, j)↑c( 0,0

i′ , j ′)↓|�〉|2, (31)

where kmodKR denotes the vector k reduced to the 1BZ of the superlattice, the elementary cell
of which is depicted by figure 1, and εk,α is the energy of the αth band in figure 6. In order to
evaluate (31) we need to find matrix elements,

M(n,l
i, j)(

0,0
i′ , j ′)

= 〈�|h(n,l
i, j)↑c( 0,0

i′ , j ′)↓|�〉. (32)

A scheme showing how to do this in the framework of the spin polaron (string) approach was
developed before [43]. For example, the removal of the spin-down electron at the site (2, 1) in
the elementary cell of the underlying spin background depicted by figure 1 gives rise to a state
which is a component of the wavefunction for the polaron created at this site. Thus the matrix
element (32) for (i ′, j ′) = (i, j) = (2, 1) and (n, l) = 0 is α0.

Quantum spin fluctuations which are generated in the underlying spin background
schematically depicted by figure 1 cannot be neglected when we evaluate the spectral function.
Within the first-order perturbation theory the admixture δ|φ〉 of quantum fluctuations to the
ground state |φ0〉 of H0 brought about by the perturbation H1 is

δ|φ〉 = −
∑

n

〈ψn |H1|φ0〉
En − E0

|ψn〉, (33)

where |ψn〉 are excited eigenstates of H0 with energies En and E0 is the ground-state energy.
The action of the exchange interaction between sites depicted by figure 5(a), L(U) belonging
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Figure 6. Band structure
in the stripe phase, obtained
within the scenario of coexist-
ing bond and AF orders.

to a DW and i( j) belonging to an AF domain, may transform the singlet on sites L and U into
a triplet. Within our approach we treat this part of the exchange interaction as the perturbation.
The transformed state is an excited eigenstate of H0 with the energy J and also a quantum
fluctuation that, according to the formula (33), contributes to the underlying vacuum state |�〉,
about which we assume that it is an eigenstate of the Hamiltonian (1). In figure 1 which is the
graphical representation of a lowest-order approximation to |�〉 quantum corrections have not
been taken into account. The electron annihilation operator c that acts on a site belonging to
a bond, on which a triplet excitation has been formed, transforms it into the state representing
the hole-like quasiparticle h created at that site. This process gives rise to an addendum to the
matrix element (32). For example, the value of this addendum is −1/(2

√
2) for the matrix

element (32) labelled by the indices (i ′, j ′) = (i, j) = (n, l) = (0, 0). The XY part of the
exchange interaction, which we treat as a perturbation, creates in |�〉 an excitation that takes
the form of two NN spins turned upside down, figure 5(b), in comparison to the underlying
spin structure, figure 1. According to the recipe (33) this excitation contributes a correction to
the underlying vacuum state |�〉. If the annihilation operator c removes the spin-down fermion
at the site j in figure 5(b), the configuration depicted by figure 5(c) will be created, which is a
string state, a component of the wavefunction |ψi 〉 for the spin polaron at the site i . Since this
spin polaron state is by definition created by the fermionic operator h†

i a contribution −α1/4
to some diagonal matrix elements of the form (32) is generated. Now, we discuss the last
category of processes which create new terms in the sum that appears in (31). The electron
removal from the site k, figure 4(b), gives rise to a string state of length 2, figure 4(d), which is
a component of the wavefunction for the spin polaron at the site i . Since the spin polaron state
is created by the operator h†

i , a nonvanishing matrix element in M defined by (32) is generated.
Its value is −α2/4, which gets multiplied by a factor of 2, because there are two strings of
length 2, connecting sites i and k. By collecting all contributions to the sum which appears
in (31) the one-electron removal part of the spectral function A−(k, ω) can be evaluated. We
will apply in the numerical evaluation some Lorentzian broadening of the Dirac delta function,
which is justified because experimental measurements, with which we are going to compare
our results, have finite resolution and also an averaging procedure is often applied to present
experimental data.

The removal of a spin-down electron from a site which belongs to a ladder-like DW in
the state depicted by figure 1 gives rise to the hole-like quasiparticle h at this site. Since this
removal may be induced by the electron annihilation operator c in (32), a nonvanishing diagonal
matrix element −1/

√
2 is generated.



9764 P Wróbel et al
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Figure 7. Spectral weight intensity A−(k, ω) along some directions at the doping level 15%.
Lorentzian broadening with the width 0.1t has been applied.

In a similar way as has been shown above, all nonvanishing matrix elements (32) may be
found within the applied approach.

4. Numerical evaluation of the spectral weight, comparison with results of ARPES
experiments and concluding remarks

It seems that the most complete set of data to compare with our theoretical analysis provides
ARPES measurements of the LSCO and Nd-LSCO systems made for the doping level x =
0.15 [13, 14, 28, 42]. We will present our results in a way similar to the presentation method,
which was used in experimental papers reporting these measurements. The NN hopping
parameter t defines a unit in which energy is measured. We choose J/t = 0.4, t ′/t = −0.1,
t ′′/t = 0.05. That choice is based on several previous theoretical analyses by means of
which model parameters have been determined by making comparison with ARPES spectra of
different cuprate compounds [44–51]. Similar values of parameters have also been applied in a
recent theoretical analysis of ARPES spectra in the 2D t JM [32]. That analysis is based on the
exact diagonalization of the 5 × 4 cluster. The same parameters have been used in a separate
calculation presented in that paper and performed by means of the bond operator formalism
applied to the underlying spin structure with the columnar bond order. This coincidence helps to
make comparison between the results of the calculation presented in our paper and the results of
the earlier analysis. Furthermore, previous discussions of ARPES spectra from LSCO systems
indicate that the ratios |t ′/t| and |t ′′/t| are lower for these systems than for other members of
cuprate family [51], which agrees with our choice.

The position of the Fermi energy in the band structure at the doping level 15% has
been determined in our calculation by counting the number of hole-like states. It has been
marked as a narrow straight line in figure 6. Figure 7 depicts the intensity of the one-
electron removal spectrum function presented in the frame of reference momentum–energy.
Contributions from vertical and horizontal stripes have been summed in order to account
for the presumed coexistence of these structures in different parts of the sample. In some
agreement with the experimental result obtained at the doping level 15% [28] we notice in the
calculated spectrum a strongly dispersing band between points (0, 0) and (π, 0)/(0, π) which
approaches the Fermi level, ω = 0, near the zone boundary, where it joins a flat patch formed
by the region of high spectral intensity. After passing the antinodal region as a straight narrow
strip, the band-like region of high intensity disappears somewhere between (π, 0)/(0, π) and
(π, π) points. In the calculated spectrum we also notice two cusps near k = (π/2, 0) and
k = (π, π/2). Those cusps are absent in the experimental spectrum. This discrepancy may
be attributed to the fact that to the just discussed high-intensity patch which looks like a single
band in the plot there actually contribute two of many bands which may be seen in figure 6.
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Notwithstanding some more discrepancies, we will see that our approach gives rise to results
that are in overall agreement with experimental data, which is not true if the propagation of a
hole in a homogeneous AF background or in a pure bond-ordered background is considered.
For example, the band which appears in the results of the calculation based on the scenario of
the columnar bond order [32] also has strong dispersion but does not flatten in the antinodal
region. Despite the fact that neither the spectral weight of a quasiparticle propagating in the
bond-ordered spin background nor the spectral weight of the quasiparticle propagating in the
AF background [52] resembles ARPES spectra from doped LSCO and doped Nd-LSCO in
the stripe phase, the spectral properties of our model in which these two phases coexist are
in qualitative agreement with experimental data. This agreement may be attributed to the fact
that the band structure of the model for nanoscale phase separation which we discuss here has
some features which are present in band structures of both pure homogeneous phases. We
will justify this statement during the further analysis of the spectrum. For example, in our
results we actually see a remnant of a strip formed by a high-intensity region which takes
the shape of a strongly dispersing band along the line between points (0, 0) and (π, 0)/(0, π)
and resembles the band that is formed in the columnar bond-ordered phase. This band-like
structure actually does not flatten and reaches a maximum near the points (0, π/2)/(π/2, 0).
It is likely that the presence of this maximum in our calculation may be attributed to the
brute force method of sewing the bond-ordered parts of the system with the parts which are
antiferromagnetically ordered. The lack of the straight high-intensity patch at the antinodal
region in results of the theory based on the scenario of the columnar bond-ordered phase
gives rise to a conclusion that the spectral function calculated within this picture does not
satisfactorily agree with measured ARPES spectra and suggests that it is necessary to take into
account the long-range AF correlations in order to formulate a theory which accounts for the
spectral properties of the cuprates in the stripe phase.

In the region between the zone centre and antinodal points (π, 0)/(0, π) the agreement has
been also observed between the experimental data and the results of a calculation based on the
dynamical mean field theory (DMFT) applied to the Hubbard model [18].

Along the line connecting the points (0, 0) and (π, π) both in ARPES spectra and in our
results we see a band in the vicinity of the Fermi surface. This band has a maximum at the
points (π/2, π/2), bends downwards, and disappears near the zone corner. A similar feature
may be observed in the results of an exact diagonalization performed for the t–t ′–t ′′–J model
and in the results of the calculation performed within the scenario of the bond-ordered columnar
phase [32]. The DMFT of the stripe phase in the Hubbard model at the doping level 15% gives
rise to a slightly different result, namely it seems that the band crosses the Fermi level near the
point (π/2, π/2).

The intensity map of the one-electron removal spectral function A−(k, ω) at the Fermi
energy obtained in the framework of our scenario which assumes the coexistence of bond and
AF orders is depicted by figure 8. Figure 8(a) refers to results of the calculation in which
we have assumed that bond order is formed on legs in ladder-like DWs. That figure shows
some agreement with ARPES data from LSCO and Nd-LSCO [14] obtained for the doping
level 15%. We see well developed spectral weight in the antinodal regions. These regions are
bridged by high-intensity continuous almost straight high-intensity patches. It seems that the
agreement between the experimental results and the results of our theory based on the mixture
of the bond formalism and the spin polaron approach is slightly better in this respect than the
agreement with results of the previous calculations based on the CPT applied to microscopic
models which are the t JM and the Hubbard model [21, 26].

Figure 8(b) depicts the spectral weight at the Fermi energy obtained in a separate
calculation for the underlying spin background with bond order on rungs. We know from
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Figure 8. Intensity maps of the spectral weight A−(k, ω) at EF obtained for stipe systems with
bond order on legs (a) and with bond order on rungs (b).

the results of a previous paper [34] that such a structure is less stable and do not expect
much similarity with experimental results. Such a lack of similarity may be seen, indeed.
For example, the high-intensity patches do not form a shape resembling the Fermi surface
obtained by means of calculations based on the local density approach. Such a shape may be
observed both in experimental spectra and in figure 8(a). In figure 8 apart from patches of
high spectral density along curves forming the Fermi surface which is observed in experiments
we notice additional regular structures formed by regions of enhanced intensity. It seems that
the origin of those additional structures may be attributed to simplicity of our approach within
which fluctuations of the underlying spin structure depicted in figure 1 and shape fluctuations
of stripes are neglected to a great extent. It is natural to expect that such fluctuations smear out
the contribution to the spectral function from excitations which may be classified as incoherent
background and only the dominating quasiparticle contributions, which may be seen as very
bright patches in figure 8, are preserved in the spectra of a real system.

Calculations based on the phenomenological approach to disordered charge stripes and
antiphase spin domains give rise to a pattern formed by regions of high spectral intensity in
the 1BZ which strongly resembles ARPES spectra [29, 25]. Unfortunately no microscopic
justification has been provided for phenomenological one-body Hamiltonians which have been
applied to derive the spectral density by means of calculations that rely on this scenario. Our
calculation is based on the microscopic t–t ′–t ′′–J model. On the other hand, it seems that
disorder may give rise to spreading of spectral weight over the whole antinodal region. Such
a spreading is not observed in the results of our calculation. In a previous paper we have
demonstrated that the magnetic structure of the stripe which we have considered here is likely
to have lowest energy at and above the doping level 12.5%, if the distance between axes of
nearest stripes is 4 lattice spacings, as it has been suggested by experiments [34]. Bond order
parallel to stripe axes and long-range AF order coexist in this magnetic structure.

It has been also suggested that the shape of the Fermi surface seen in ARPES spectra from
Nd-LSCO and LSCO at the doping level in the range 12.5%–15% may be also explained in the
framework of more conventional band calculations which neglect the formation of nanoscale
inhomogeneities [53]. In our opinion, it is hard to reconcile such a way of thinking with the
evidence for stripes forming in these systems.

A natural additional question which can be raised is whether the long-range Coulomb
interaction will destabilize stripes. On the contrary, it seems that such interaction may even
favour smectic order [54], especially when holes form bound pairs. In addition, the formation
of wide stripes which are considered by us as bond-centred stripes does not mean that the
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distance between nearest charges in stripes is much smaller than the average distance between
all nearest charges. Thus the increase of the Coulomb energy induced by the nanoscale phase
separation in the stripe phase is not necessary very high. On the other hand, a detailed analysis
of the impact which the long-range Coulomb interaction between unbound charged holes may
have on stripe formation is still missing. It is necessary to mention here that in this paper we
analyse just the case of unbound charges and we do not discuss the issue of the long-range
Coulomb forces. Nevertheless one can speculate that since the coherence length in cuprates is
short the screening of the Coulomb repulsion should be substantial. Otherwise the applicability
to cuprates of widely used models based on the Hubbard model would be questionable. The
conclusion concerning screening is to some extent supported by the lack of clear evidence
for the strong lattice response to local charge-stripe order [9–11, 55]. These remarks seem
to suggest that in the simplest analysis of spectral properties in the bond-ordered stripe phase
effects related to the long-range Coulomb interaction and lattice response can be neglected.

In conclusion, motivated by results of a previous calculation [34] indicating that, at the
doping level 1/8 and above, the stripe structure which consists of (a) hole-filled two-leg ladder-
like DWs with the bond order formed on legs and (b) AF domains of width 2 lattice spacings
and with the changing phase of the sublattice magnetization by π across each DW is stable,
we have performed the calculation of the single-particle spectral density which is generated
in such a system. Our analysis has been made in the framework of the t–t ′–t ′′–J model with
parameter values in the range suggested by comparison between band structure calculations
and the Fermi surface of overdoped LSCO systems. The calculation which we have performed
is a combination of the bond fermion method and the spin polaron approach. We observe
pronounced spectral weight both in the antinodal and nodal regions. Very similar features may
be seen in ARPES spectra from LSCO and Nd-LSCO at the filling level 15%, which is exactly
the same as we have assumed in the calculation. This similarity is not trivial because different
optional structures of bond order in DWs such as the bond order on rungs in the ladder-like
DWs or the bond order which takes the shape of two layers in a brick-wall give rise to spectra
at the Fermi level which have completely different forms. We consider the observed agreement
between experiment and theory as an argument for the scenario of coexisting bond and long-
range AF orders in the stripe phase of doped cuprates.
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Appendix

A singlet on two sites L and U is created in the empty lattice by the operator

s†
LU = i√

2
[σ 0σ y]αβc†

Lαc†
Uβ. (34)

σ 0 is the two-dimensional identity matrix and σ a , a = x, y, z, are Pauli matrices. The
summation over repeating Greek indices is assumed. Three operators which are components of
the vector t†

LU create three triplet states on sites L and U ,

t†
LU = i√

2
[σσ y]αβc†

Lαc†
Uβ. (35)

A formula which we often use is

−c†
U ′σ cUσ (s

†
LU c†

L ′γ )|0〉 =
(

1
2 s†

L ′U ′ c
†
Lγ + 1

2 t†
L ′U ′σαγ c†

Lα

)
|0〉. (36)
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The left-hand side of (36) together with the first term on the right-hand side represent the
exchange of a singlet and a hole–fermion pair between two bonds. That exchange is mediated
by the hopping term in the initial Hamiltonian. In our analysis we neglect the creation of triplets
on bonds; however, this process also takes place during hole hopping. The creation of a triplet
is represented by the second term on the right-hand side of (36). For calculation of the energy
spectrum we also need formulae which represent the hopping of a hole from a single site i
which belongs to an AF domain to a site which belongs to a bond occupied by a singlet and
vice versa:

−c†
iσ cUσ (s

†
LU )|�〉 = − i√

2
σ

y
αβc†

Lαc†
iβ |0〉, (37)

−c†
Uσ ciσ (c

†
Lαc†

iβ)|0〉 =
(

− i√
2
σ

y
αβs†

LU + i√
2
[σ yσ ]αβ t†

LU

)
|0〉. (38)

In the analysis of contributions from quantum fluctuations in the ground state of the system to
the spectral function the following formulae are useful:

SL Si (s
†
LU c†

iβ |φ〉 = 1
2σαβ(t

†
LU c†

iα)|0〉, (39)

SU Si (s
†
LU c†

iβ |φ〉 = − 1
2σαβ(t

†
LU c†

iα)|0〉. (40)

References

[1] Tranquada J M 2005 Preprint cond-mat/0512115 and references therein
[2] Thurston T R, Birgeneau R J, Kastner M A, Preyer N W, Shirane G, Fujii Y, Yamada K, Endoh Y, Kakurai K,

Matsuda M, Hidaka Y and Murakami T 1989 Phys. Rev. B 40 4585
Cheong S-W, Aeppli G, Mason T E, Mook H, Hyden S M, Canfield P C, Fisk Z, Clausen K N and

Martinez J L 1991 Phys. Rev. Lett. 67 1791
Thurston T R, Gehring P M, Shirane G, Birgeneau R J, Kastner M A, Endoh Y, Matsuda M, Yamada K,

Kojima K and Tanaka I 1992 Phys. Rev. B 46 9128
[3] Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y and Uchida S 1995 Nature 375 561
[4] Matsuda M, Birgeneau R J, Chou H, Endoh Y, Kastner M A, Kojima H, Kuroda K, Shirane G, Tanaka I and

Yamada K 1993 J. Phys. Soc. Japan 62 443
Yamada K, Wakimoto S, Shirane G, Lee C H, Kastner M A, Hosoya S, Greven M, Endoh Y and

Birgeneau R J 1995 Phys. Rev. Lett. 75 1626
Hirota K, Yamada K, Tanaka I and Kojima H 1998 Physica B 241–243 817
Kimura H, Hirota K, Matsushita H, Yamada K and Endoh Y 1999 Phys. Rev. B 59 6517
Tranquada J M, Ichikawa N, Kakurai K and Uchida S 1999 J. Phys. Chem. Solids 60 1019
Tranquada J M, Ichikawa N and Uchida S 1999 Phys. Rev. B 59 14712

[5] Kivelson S A, Bindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A and Howald C 2003 Rev.
Mod. Phys. 75 1201 and references therein

[6] Ando Y, Segawa K, Komiya S and Lavrov A N 2002 Phys. Rev. Lett. 88 137005
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Raczkowski M, Frésard R and Oleś A M 2006 Phys. Rev. B 73 174525

[37] Becker K W, Eder R and Won H 1992 Phys. Rev. B 45 4864
[38] Eder R 1998 Phys. Rev. B 57 12832
[39] Jurecka C and Brenig W 2000 Phys. Rev. B 61 14307

Brenig W and Becker K W 2001 Phys. Rev. B 64 214413
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